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Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation
for Brownian motion in a potential: The continued fraction approach

Yu. P. Kalmykov
Centre d’Études Fondamentales, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan Cedex, France

~Received 7 February 2000!

An equation for the smallest nonvanishing eigenvaluel1 of the Fokker-Planck equation~FPE! for the
Brownian motion of a particle in a potential is derived in terms of continued fractions. This equation is directly
applicable to the calculation ofl1 if the solution of the FPE can be reduced to the solution of a scalar
three-term recurrence relation for the moments~the expectation values of the dynamic quantities of interest!
describing the dynamical behavior of the system under consideration. In contrast to the previously available
continued fraction solution forl1 @for example, H. Risken,The Fokker-Planck Equation, 2nd ed.~Springer,
Berlin, 1989!#, this equation does not require one to solve numerically a high order polynomial equation, as it
is shown thatl1 may be represented as a sum of products of infinite continued fractions. Besides its advantage
for the numerical calculation, the equation so obtained is also very useful for analytical purposes, e.g., for
certain problems it may be expressed in terms of known mathematical~special! functions. Another advantage
of such an approach is that it can now be applied to systems whose relaxation dynamics is governed by
divergent three-term recurrence equations. To test the theory, the smallest eigenvaluel1 is evaluated for
several double-well potentials, which appear in various applications of the theory of rotational and translational
Brownian motion. It is shown that for all ranges of the barrier height parameters the results predicted by the
analytical equation so obtained are in agreement with those obtained by independent numerical methods.
Moreover, the asymptotic results forl1 previously derived for these particular problems by solving the FPE in
the high barrier limit are readily recovered from the analytical equations.

PACS number~s!: 05.40.Jc, 05.10.Gg
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I. INTRODUCTION

The model of Brownian motion of a particle in a potent
has a variety of applications. Among the various phenom
to which this model has been applied, one can mention
current-voltage characteristics of the Josephson junction@1#,
the dielectric and Kerr-effect relaxation of liquids and m
lecular and liquid crystals@2–5#, the mobility of superionic
conductors@6#, the magnetic relaxation of single-domain fe
romagnetic particles~superparamagnetism! @7,8#, the escape
of particles over potential barriers@9#, radio engineering
@10#, etc. A detailed discussion of this model with ma
particular applications is given in@11,12#.

The dynamics of the Brownian motion of a particle in
potential is described by the Langevin equation for appro
ate dynamic variables or the accompanying Fokker-Pla
equation~FPE! for the probability density function of thes
variables@11#. The solution of the Langevin equation or th
FPE can be reduced to the solution of an infinite hierarchy
equations for the moments~the expectation values of th
dynamic quantities of interest! describing the dynamics o
the system under consideration. Various examples can
found in Refs.@11# and @12#. In general, the hierarchies o
the moment equations that are generated by the underl
FPE take the form of three-~or higher-order! term
differential-recurrence relations between the moments. T
the behavior of any selected average is coupled to that o
the others, so forming an infinite system of moment eq
tions. The time behavior of the first-order average, for
ample, involves that of the second-order average, which
turn involves the third-order average, and so on. If the rec
PRE 611063-651X/2000/61~6!/6320~10!/$15.00
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rence relation between the averages is ascalar three-term
one, the solution may be expressed in terms of ordinary
finite continued fractions@11,12#. A multiterm recurrence re-
lation may be reduced to amatrix three-term recurrence re
lation, which may be solved in terms of matrix continue
fractions@11#. In the present paper we confined ourselves
problems that may be reduced to the solution of a sc
three-term recurrence relation only. The problem involvi
the solution of multiterm recurrence relations will be cons
ered in a forthcoming paper.

A scalar three-term recurrence relation may be writ
down as@11#

te

d

dt
Cn~ t !5qn

2Cn21~ t !1qnCn~ t !1qn
1Cn11~ t !,

n51,2,3, . . . , ~1!

where theCn(t) are the moments or the appropriate rela
ation functions,qn

2 , qn
1, andqn are time independent coef

ficients, andte is a characteristic time constant. Such re
tions usually arise from solution of the FPE in the hig
friction ~overdamped! limit, when it is possible to neglect the
inertia of the Brownian particle@11,12#. A general method of
solution of Eq.~1! in terms of continued fractions was de
scribed by Risken@11# and later extended by Coffey
Kalmykov, and Waldron@12#. The last approach has th
merit of being simpler than the previously available solutio
Thus, according to@12#, the exact solution of Eq.~1! with
C0(t)50 for the Laplace transform ofC1(t) is given by
6320 ©2000 The American Physical Society
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C̃1~s!5
te

tes2q12q1
1S2~s!

FC1~0!

1 (
n52

` S )
k52

n qk21
1 Sk~s!

qk
2 D Cn~0!G , ~2!

where the infinite continued fractionsSn(s) are defined as

Sn~s!5
qn

2

tes2qn2
qn

1qn11
2

tes2qn112
qn11

1 qn12
2

tes2qn122¯

. ~3!

The initial conditionsCp(0) in Eq.~2! can also be expresse
in terms of the matrix continued fractionSp(0) from Eq.~3!
~see Refs.@11# and @12#!.

Having determinedC̃1(s) from Eq. ~2!, one is able to
calculate the relaxation~or correlation! time t of the dynamic
quantity of interest, which is defined as

t5
1

C1~0!
E

0

`

C1~ t !dt5
C̃1~0!

C1~0!
. ~4!

The relaxation timet may equivalently be defined in th
context of the FPE converted to the Sturm-Liouville proble
as

t5
(kck /lk

(kck
, ~5!

wherelk andck are the eigenvalues and their correspond
weight coefficients~amplitudes!, as the functionC1(t) is
given by

C1~ t !5(
k

cke
2lkt.

Thus in order to evaluatet from Eq. ~5! knowledge of the
eigenvalueslk and their amplitudesck is required. As has
been shown in many examples~e.g., Refs.@11#, @13–15#!,
the results given by Eqs.~4! and ~5! are completely equiva
lent. Other time constants that characterize the dynamic
the system, such as the mean first passage timetMFP @15#. the
effective relaxation timeteff @16#, etc. can also be evaluate
in terms oflk andck .

In general, the eigenvalue problem of the FPE is qu
difficult to solve. Various methods of calculating the eige
values of the FPE have been discussed in detail in Ref.@11#.
In the context of the continued fraction approach, the eig
values can be determined by inserting the separation an
@11#

Cn~ t !5Ĉne2lt, n51,2,3, . . . , ~6!

into Eq. ~1!. Thus, one obtains an equation for the eigenv
ues, viz.,

tel1q11q1
1S2~2l!50. ~7!

The disadvantage of Eq.~7! is that in some cases it may b
extremely difficult to evaluate the eigenvalues, as it involv
finding the roots of a very high order polynomial equatio
g

of

e
-

-
atz

l-

s
,

and it is known that standard mathematical programs fai
determine the roots of such an equation. Moreover, there
some examples where the continued fractionS2(2l) di-
verges~e.g.,@13#!, or Eq.~7! is not applicable at all, becaus
the calculation gives rise to unphysical solutions@11#. In
such cases, Eq.~7! cannot be used for the evaluation ofl. It
is therefore still worthwhile to seek a more advanced
proach, which would be applicable to the solution of Eq.~7!.
This is especially important if one perceives that stand
computational methods such as the numerical solution of
~7! arranged as a first-order matrix differential equation, v

d

dt
X~ t !5AX ~ t ! ~8!

@A is a tridiagonal system matrix,X(t) is an infinite column
vector arranged from the momentsCn(t)#, may also be in-
applicable in such cases.

The goal of the present paper is to extend the contin
fraction approach of Ref.@11# for evaluation of the eigenval
ues of the FPE for Brownian motion in a potential. Here
usable method for evaluating the smallest nonvanishing
genvaluel1 is presented. A knowledge ofl1 is of impor-
tance because various time constants such as the relax
time t, the mean first passage time, and the escape rate
mainly determined by the slowest low frequency relaxat
mode, which governs transitions over the barriers from o
potential well into another. The characteristic frequency
this overbarrier relaxation mode is given by the inverse
l1 . Moreover, in many cases the influence of other rel
ation modes in the low frequency region may be ignored a
thus, knowledge ofl1 provides sufficient information abou
the low frequency dynamics of the system under consid
ation @11,12#.

The paper is arranged as follows. In Sec. II, an equat
for the smallest eigenvaluel1 is derived in terms of contin-
ued fractions. Verification of the validity of this equation
given in Secs. III and IV by evaluatingl1 for symmetric
bistable potentials, which appear in various applications
the theory of rotational Brownian motion. Furthermore, t
approach developed is used in Sec. V for the calculation
l1 for the problem of translational Brownian motion in
quartic double-well potential, where the relaxation dynam
is governed by a divergent three-term recurrence equatio

II. CONTINUED FRACTION SOLUTION FOR l1

In general, Eq.~7! allows one to evaluate all the eigenva
ues numerically@11#. However, if one is interested in th
calculation ofl1 only, Eq. ~7! can be simplified as follows
On supposing that the continued fractionS2 may be ex-
panded in Taylor series, viz.,

S2~2l1!5S2~0!2S28~0!tel11S29~0!
~tel1!2

2

1O„~tel1!3
…, ~9!

which is subject to the condition

utel1S29~0!/2S28~0!u!1 ~10!
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that allows one to take into account only the first two ter
in Eq. ~9!, one has from Eq.~7!

tel1@12q1
1S28~0!#1q11q1

1S2~0!50

or

tel152
q11q1

1S2~0!

12q1
1S28~0!

, ~11!

whereS28(0) andS29(0) are the first and second derivativ
of the continued fractionS2(s) with respect toste , respec-
tively. The condition~10! of the applicability of Eq.~11! is
evidently valid in the high barrier~or low temperature! limit,
wheretel1!1 @11,12#. However, Eq.~11! also provides suf-
ficient accuracy for intermediate and small barrier heigh
wheretel1<1, but the condition~10! still remains fulfilled,
asS29(0)/2S28(0)!1 ~see Secs. III and IV!.

In order to calculatel1 from Eq.~11!, one needs to derive
an equation forS28(0). This can be accomplished by notin
that the continued fractionSn(s) defined by Eq.~3! and the
derivative ofSn(s) with respect toste satisfy the following
recurrence relations:

Sn~s!5
qn

2

tes2qn2qn
1Sn11~s!

~12!

and

Sn8~s!52Sn
2~s!@12qn

1Sn118 ~s!#/qn
2 , ~13!

respectively.@Equation~13! can be readily obtained by direc
differentiation of Eq.~12!.# The solution of the recurrenc
Eq. ~13! may be obtained by iteration and is given by

Sn8~s!52
1

qn21
1 (

k50

` S )
m50

k

Sn1m
2 ~s!qn1m21

1 /qn1m
2 D ,

which yields fors50 andn52

S28~0!52
1

q1
1 (

k51

` S )
m51

k

Sm11
2 ~0!qm

1/qm11
2 D . ~14!

Thus, on substituting Eq.~14! into Eq. ~11!, we have an
equation forl1 , viz.,

tel152
q11q1

1S2~0!

11 (
k51

` S )
m51

k

Sm11
2 ~0!qm

1Y qm11
2 D . ~15!

We shall now show that the calculation ofl1 , unlike the
representation of Eq.~7!, which always requires one to solv
numerically a high order polynomial equation inl, can now
easily be accomplished from Eq.~15!. Equation~15! requires
only calculation of the continued fractionsSn(0), which can
be carried out even on a programmable pocket calcul
@11#. Moreover, Eq.~15! can be further simplified by using
the method developed by Coffey, Kalmykov, and Waldr
@12#. According to this method, the continued fractionSn(0)
for certain problems may be expressed in terms of equ
rium averages as a ratio of known mathematical~hypergeo-
metric! functions. This allows us to derive analytical equ
tions forl1 . The advantage of such an approach is that it
s

,

or

-

-
n

also be used for the evaluation ofl1 for those problems
where the continued fractionsSn(0) diverge and thus the
continued fraction approach based on solving Eq.~7! is no
longer applicable~see, e.g., Ref.@13#!. Such an example will
be considered in Sec. V.

III. TWO-DIMENSIONAL ROTATIONAL BROWNIAN
MOTION IN A DOUBLEFOLD COSINE POTENTIAL

Here we shall consider the noninertial rotational Brow
ian motion of a planar rotator with a dipole momentm in a
doublefold cosine potential

V~u!5U sin2u, ~16!

whereu is the angle between the dipole vectorm and thez
axis. A comprehensive numerical study of this model h
been made by Lauritzen and Zwanzig@17# and Coffeyet al.
@18# in connection with site models of dielectric relaxation
molecular crystals. Here this model is used as a simple
ample for verification of the continued fraction solution E
~15!. Furthermore, although this model has already been w
documented in Refs.@17# and @18#, an equation forl1 that
would be valid for all ranges of the barrier height paramet
has not yet been presented.

In order to study the longitudinal relaxation behavior, it
supposed that a small uniform fieldE applied along thez
axis is switched off att50. Then the noninertial Langevin
equation for a dipolem rotating about an axis normal to th
xz plane is@12#

§
d

dt
u~ t !1U sin2u~ t !5l~ t ! ~ t.0!, ~17!

where§u andl(t) are the frictional and white noise torque
due to the Brownian motion, and§ is the viscous drag coef
ficient. The relevant noninertial FPE for the probability di
tribution functionW of the angleu is @17#

tD

]

]t
W5

1

kT

]

]u S W
]

]u
VD1

]2

]u2 W, ~18!

where

tD5§/kT ~19!

is the Debye relaxation time for a planar rotator andkT is the
thermal energy withk the Boltzmann constant andT the
absolute temperature.

The differential-recurrence equation for the odd statisti
moments f 2n21(t) appropriate to dielectric relaxation de
fined as

f 2n21~ t !5^cos~2n21!u& ~20!

~the angular brackets mean a statistical averaging! is given
by @18#

d

dt
f 2p11~ t !1

~2p11!2

tD
f 2p11~ t !

5
s~2p11!

2tD
@ f 2p21~ t !2 f 2p13~ t !#. ~21!

Here
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s5
U

kT
~22!

is the barrier height parameter.
The set of Eq.~21! may be transformed into the matri

equation~8!, where the system matrixA is given by

A52
1

tD S ~12s/2! s/2 0 0 0 ¯

23s/2 9 3s/2 0 0 ¯

0 25s/2 25 5s/2 0 ¯

¯ ¯ ¯ ¯ ¯ ¯

D
~23!

and

X~ t !5S f 1~ t !

f 3~ t !

]

f 2p11~ t !

]

D . ~24!

The lowest eigenvaluel1 is then the smallest root of th
characteristic equation

det~lI2A!50. ~25!

For the problem in question, evaluation of the eigenval
from Eq. ~25! creates no difficulties and it is used here on
for the purpose of comparison with the results of the con
ued fraction approach.

In the context of the continued fraction approach, t
smallest eigenvalue is given by Eq.~15!. For the present
problem, where only the odd moments are involved in E
~21!. Eq. ~15! becomes

tDl152
q11q1

1S3~0!

11 (
k51

` S )
m51

k

S2m11
2 ~0!q2m21

1 Y q2m11
2 D ,

~26!

where

q2m1152~2m11!2, q2m11
1 52

s

2
~2m11!,

q2m11
2 5

s

2
~2m11!, ~27!

and the continued fractionS2k11(0) is given by@18#

S2k11~0!5
s

4k121sS2k13~0!
. ~28!

The S2k11(0) from Eq. ~28! may in turn be expressed i
terms of modified Bessel functions of the first kind of ha
integer orderI k11/2(z) @19# as @18#

S2k11~0!5
I k11/2~s/2!

I k21/2~s/2!
. ~29!

Equation~26! then becomes after some algebra

l1tD5S p

12e2s (
p50

`

~21!p
I p11/2

2 ~s/2!

2p11 D 21

, ~30!
s

-

e

.

where we have used@19#

I 1/2
2 ~z!5

2

pz
sinh2 z,

I 3/2~z!

I 1/2~z!
5cothz2

1

z
. ~31!

Equation~30! can be further simplified, on noting that@20#

(
p50

`

~21!p
I p11/2

2 ~z!

2p11
5

2z

p 2F3~1,1;3
2 , 3

2 , 3
2 ;z2!,

where 2F3(a1 ,a2 ;b1 ,b2 ,b3 ;z) is a hypergeometric function
@20#. Thus, Eq.~30! yields

l1tD5F s

12e2s 2F3S 1,1;3
2 , 3

2 , 3
2 ;

s2

4 D G21

. ~32!

For s!1, one can obtain from Eq.~32! the Taylor series
expansion ofl1 , viz.,

l1tD512
s

2
1

5

54
s21O~s3!. ~33!

In the opposite limit (s@1), on using the asymptotic expan
sion of I p(z) for large values ofz in Eq. ~30!, one arrives at

l1
astD;

4se2s

p
. ~34!

Equation~34! is in agreement with the results of Lauritze
and Zwanzig@17#, who obtained an asymptotic expansion f
the lowest eigenvalue in the limit of high potential barrie
This is also in accordance with the leading term of t
asymptotic expansion forl1 obtained in Ref.@21#, viz.,

l1
astD;

4se2s

p S 12
1

2s D . ~35!

Equation~34! is also in accordance with results of the eva
ation of the mean first passage time of the model under c
sideration in the high barrier limit@15#.

For the present problem the lowest eigenvalue comple
determines the behavior of the correlation timet from the
exact Eq.~4!, which yields@18#

t5
tD~es21!

sI 1/2~s/2!

3 (
p50

`
~21!p

~2p11!

I p11~s/2!1I p~s/2!

I 1~s/2!1I 0~s/2!
I p11/2~s/2!.

~36!

Equation~36! may be equivalently presented in an integ
form as

t5
tD

p@ I 1~s/2!1I 0~s/2!#

3E
0

2p

e2~s/2!cos 2fS E
0

f

cosxe~s/2!cos 2xdxD 2

df.

~37!
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TABLE I. Numerical values for the doublefold cosine potential.

s/2 tDl1
num @13# tDl1 @Eq. ~30!# tDl1

as @Eq. ~35!# tD /t @Eq. ~37!#

0 1.0 1.0 2` 1.0
1 0.323 7 0.323 36 0.258 47 0.325 71
2 0.082 0 0.081 93 0.081 62 0.082 64
3 0.017 2 0.017 15 0.017 36 0.017 25
4 0.003 18 0.003 18 0.003 20 0.003 19
5 5.46331024 5.46331024 5.49131024 5.47331024

6 8.96631025 8.96631025 8.99731025 8.96531025

7 1.42631025 1.42631025 1.42931025 1.42731025

8 2.2231026 2.21731026 2.22131026 2.21831026

9 3.38931027 3.38931027 3.39431027 3.39031027

10 5.11231028 5.11231028 5.11731028 5.11431028
n
r-
ge

the
t

nal
c-
Here we recalled~see, e.g., Ref.@11#, Sec. S.9! that for a
stochastic system the dynamics of which obeys the o
variable FPE for the distribution functionW of a variablex,

]

]t
W~x,t !5LFPW~x,t !, ~38!

where

LFP~x!5
]

]x S D ~2!~x!e2U~x!
]

]x
eU~x!D ~39!

is the Fokker-Planck operator,D (2)(x) is the diffusion coef-
ficient, andU(x) is a generalized potential@11#, the correla-
tion time t of the equilibrium ~stationary! autocorrelation
function CA(t)5^A„x(0)…A(x(t))&02^A&0

2 of a dynamic
variableA(x) is @11#

t5
1

CA~0!
E

0

`

CA~ t !dt5
1

CA~0!
E

x1

x2 f 2~x!dx

D ~2!~x!W0~x!
.

~40!

Here

f ~x!52E
x1

x

@A~x8!2^A&0#W0~x8!dx8, ~41!
e-
W0(x)5Ce2U(x) is the equilibrium~stationary! distribution
function ~it is assumed that the probability currentS50 at
equilibrium!, the symbol̂ &0 designates the statistical ave
ages overW0(x), andx is assumed to be defined in the ran
x1,x,x2 . For the problem under considerationx150, x2
52p, andD (2)(x)5tD

21 .
The lowest eigenvaluel1 calculated from Eq.~30! agrees

closely for alls with the numerical solutionl1
num gained as

the smallest root of the characteristic Eq.~25! ~see Table I
and Fig. 1!. In Fig. 1 and in Table Il1

as calculated from the
asymptotic Eq.~35! is also presented. As one can see, all
quantitiesl1 , l1

as, l1
num, andt21 are in excellent agreemen

in the high barrier limit. Moreover,l1 , l1
num, andt21 are

very close to each otherfor all barrier heights. This is due to
the fact that the condition~10!, which for the problem in
question reads

UtDl1S39~0!

2S38~0!
U!1, ~42!

still holds even for s50, where l1tD[1, and
S39(0)/2S38(0)52 1

9 .

IV. THREE-DIMENSIONAL ROTATIONAL BROWNIAN
MOTION IN A UNIAXIAL POTENTIAL

Let us now consider the problem of three-dimensio
noninertial rotational Brownian motion of a rigid symmetri
e

FIG. 1. l1 ~solid line! for a single-axis rotator
as a function of the barrier heights compared
with the asymptotic solutionl1

as @Eq. ~35!#
~dashed line! and the solution rendered by th
inverse of the correlation timet21 @Eq. ~37!#
~diamonds!.
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top polar particle in the uniaxial potential

V~q!5K sin2 u, ~43!

whereK is an anisotropy constant. This is a complete thr
dimensional analog of the two-dimensional problem cons
ered in Sec. III. The particle contains a rigid electric dipolem
directed along the long axis. Let us take a unit vectoru(t)
through the center of mass of the particle in the direction
m. Then one can write down an equation of motion for t
rate of change ofu(t) of the particle@12#

§
du~ t !

dt
52

]

]u
V1u~ t !S u~ t !•

]

]u
VD1l~ t !3u~ t !,

~44!

where§ is the friction coefficient andl(t) is the white noise
driving torque due to Brownian movement. Equation~44! is
the vectorial Langevin equation. The corresponding nonin
tial FPE for the probability density distributionW of orien-
tations of molecular dipoles in configuration space is giv
by @12#

2tD

]

]t
W5DW1

1

kT
div~W gradV!, ~45!

where

tD5§/2kT ~46!

is the Debye relaxation time for the isotropic diffusion andD
is the Laplacian on the surface of unit sphere. The rotatio
Brownian motion of a particle in the uniaxial potential~43!
arises in a variety of problems. Examples can be found
dielectric and Kerr-effect relaxation of polar and polarizab
he
-
-

f

r-

n

al

in

symmetric-top molecules@3# and dielectric relaxation of
nematic liquid crystals@22#. Moreover, the theory of dielec
tric relaxation of nematic liquid crystals with uniaxial phys
cal properties developed by Martin, Meier, and Saupe@22#
bears a close resemblance to the theory of magnetic re
ation of single-domain ferromagnetic particles as formula
by Brown @7#.

For the problem under consideration, the differenti
recurrence equations for the momentsf n(t)5^Pn„cosu(t)…&
@the expectation values of the Legendre polynomialsPn(z)#
are given by@12#

d

dt
f 2n11~ t !5

~2n11!~n11!

tD

3S 2s

~4n11!~4n15!
21D f 2n11~ t !

1
4s~n11!~2n11!

tD~4n13!

3S n

~4n11!
f 2n21~ t !2

~2n13!

2~4n15!
f 2n13~ t ! D ,

~47!

where

s5
K

kT
~48!

is the barrier height parameter.
The set of Eqs.~47! may be solved numerically by trans

forming it into the matrix Eq.~8!, the lowest eigenvaluel1
of which is then the smallest root of the characteristic E
~25!, where
A52
1

tD S ~12 2
5 s! 2

5 s 0 0 0 ¯

2 24
35 s ~62 4

15 s! 20
21 s 0 0 ¯

0 2 40
33 s ~152 10

39 s! 210
143s 0 ¯

¯ ¯ ¯ ¯ ¯ ¯

D . ~49!
In the context of the continued fraction approach t
smallest eigenvaluel1 is given by Eq.~26!, where

q2m2152m~2m21!S 12
2s

~4m23!~4m11! D ,

~50!
q2m21
2 5

4sm~m21!~2m21!

~4m23!~4m21!
, ~51!

q2m21
1 52

2sm~4m221!

16m221
, ~52!

and the continued fractionSn(0) is defined as
Sn~0!5
2s~n21!

4n2212@2s/~2n13!#@2n112~n12!~2n21!Sn12~0!#
,
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TABLE II. Numerical values for the uniaxial potential Eq.~43!.

s tDl1
num @Eq. ~25!# tDl1 @Eq. ~54!# tDl1

as @Eq. ~57!# tD /t @Eq. ~59!#

0 1.0 1.0 2` 1.0
1 0.653 14 0.652 47 0.0 0.654 46
2 0.403 84 0.402 86 0.215 96 0.406 45
3 0.235 70 0.235 03 0.194 61 0.238 20
4 0.129 84 0.129 53 0.124 00 0.131 47
5 0.067 70 0.067 60 0.068 00 0.068 55
6 0.033 61 0.033 58 0.034 26 0.033 98
7 0.016 00 0.016 00 0.016 33 0.016 15
8 0.007 36 0.007 36 0.007 50 0.007 41
9 0.003 29 0.003 29 0.003 34 0.003 31
10 0.001 44 0.001 44 0.001 46 0.001 45
e

of

f

which may in turn be expressed@23# in terms of the conflu-
ent hypergeometric~Kummer! functions M (a,b,z) ~@19#,
Sec. 13!, viz.,

S2k11~0!5
4ks

~4k11!~4k13!

M ~k11,2k1 5
2 ,s!

M ~k,2k1 1
2 ,s!

. ~53!

Thus we obtain from Eqs.~26! and ~50!–~53!

l1tD5F 3p

8M ~1,5
2 ,s!

(
n50

` S 2
s2

4 D n

3
G~2n11!M2~n11,2n1 5

2 ,s!

~n11!G~2n1 3
2 !G~2n1 5

2 !
G21

, ~54!

which is the solution in terms of known functions. Here w
have also used the fact that@23#

122s@12S3~0!#/551/M ~1,5
2 ,s!.

For s!1, one can evaluate from Eq.~54! the Taylor se-
ries expansion ofl1 , viz.,
l1tD512
2s

5
1

4

75
s21O~s3!. ~55!

On the other hand, on using the asymptotic expansion
Kummer’s functions@19#, viz.,

M ~a,b,z!5
G~b!ezza2b

G~a!G~b2a!G~12a!

3F (
n50

S21
G~b2a1n!G~12a1n!

G~n11!zn 1O~z2S!G ,

one obtains fors@1

l1
astD;

2s3/2e2s

Ap
. ~56!

Equation~56! is in full agreement with the leading term o
the previous asymptotic solution@21#,

l1
astD;

2s3/2e2s

Ap
S 12

1

s D . ~57!
n

FIG. 2. l1 @Eq. ~54!, solid line, and Eq.~25!,
stars# for the cos2 u potential as a function of the
barrier heights compared with the asymptotic
solution l1

as @Eq. ~57!# ~dashed line! and the so-
lution rendered by the inverse of the correlatio
time t21 @Eq. ~59!# ~diamonds!.
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The lowest eigenvaluel1 from Eq. ~54! is in very good
agreement with the numerical solutionsl1

num of the charac-
teristic equation@Eq. ~25!# for all s ~see Table II and Fig. 2.!
In Fig. 2 and in Table IIl1

as calculated from the asymptoti
Eq. ~57! is also presented. Just as for planar rotators,
behavior ofl1 is similar to that of the relaxation timet of
the dipole correlation function, which may be presented a
series@23#,

t

tD
5 3

2 (
n50

` ~2s2!n~n1 3
4 !G~n1 3

2 !G~n1 1
2 !

~n11!G2~2n1 5
2 !M ~ 3

2 , 5
2 ,s!

3M ~n1 3
2 ,2n1 5

2 ,s!M ~n11,2n1 5
2 ,s! ~58!

or in a quadrature@Eq. ~40!# @14,24#, viz.,

t

tD
5

3

sM ~ 3
2 , 5

2 ,s!
E

0

1 cosh@s~12z2!#21

12z2 dz. ~59!

l1 , l1
as, and t21 are in excellent agreement in the hig

barrier limit and, moreover,l1 , l1
num, and t21 are very

close to each other for all barrier heights. Thus, Eq.~54! may
be used to calculatel1 for all values ofs. The reason for this
is that the condition of applicability@Eq. ~42!# of Eq. ~54!
may be considered as fulfilled with sufficient accuracy ev
for s50, wherel1tD[1, andS39(0)/2S38(0)52 1

6 .

V. BROWNIAN PARTICLE IN A 2-4 DOUBLE WELL
POTENTIAL

As another example let us consider the model of nonin
tial translational Brownian motion of a particle in a quar
potential:

V~x!5
ax2

2
1

bx4

4
, ~60!

wherea andb (b.0) are constants,2`,x,`. This model
is very often used to describe noise-driven motion in a v
ety of bistable physical and chemical systems@25–27#. The
relaxational dynamics of the model in the high friction lim
where the inertia of the particle may be neglected, has b
extensively studied by solving the noninertial Fokker-Plan
~Smoluchowski! equation underlying the problem~see, e.g.,
@28–32# and references cited therein!. The model of Brown-
ian particle in the potential~60! poses the problem of solvin
divergentdifferential-recurrence relations for statistical m
ments@13,32#. Here Risken’s continued fraction method@11#
and, in particular, Eq.~7!, is no longer applicable as all th
continued fractions involved diverge. However, as we sh
demonstrate below, our approach succeeds in this case
shall also show how the asymptotic solution of Larson a
Kostin @28# may be recovered from the continued fracti
solution@Eq. ~15!# in the high barrier limit. In addition, thes
will be compared with the solutions of Pericoet al. @29# and
Kalmykov, Coffey, and Waldron@13# for the relaxation time
of the positional correlation function.

The noninertial Langevin equation for the on
dimensional noninertial translational Brownian motion of
particle in the potential Eq.~60! is given by@13#

z ẋ~ t !1ax~ t !1bx3~ t !5 f ~ t !. ~61!
e

a

n

r-

i-

en
k

ll
e

d

In Eq. ~57!, x(t) specifies the position of the particle at tim
t, z ẋ is the viscous drag experienced by it, andf (t) is the
white noise driving force. The underlying noninertial FP
for the probability distribution functionW of the positionx is

z
]

]t
W5

]

]x S W
]

]x
VD1kT

]2

]x2 W ~62!

@cf. Eq. ~18!#.
Equation~61! or ~62! may be recast@13,29# as a hierarchy

of equations for the normalized correlation functionsCn(t)
defined as

Cn~ t !5
^x~0!xn~ t !&0

^x2~0!&0
~n11!/2 , ~63!

where^ &0 designates equilibrium ensemble averages. Th
the Cn(t) satisfy

t«

d

dt
Cn~ t !5n~n21!Cn22~ t !22nACn~ t !24nBCn12~ t !,

~64!

where

A5
a^x2&0

2kT
, B5

b^x2&0
2

4kT
, t«5

z^x2&0

kT
. ~65!

We recall that whena,0 the potential~60! has a barrier at
x50 where the potential has a maximum and the hei
relative to the minimum is equal to@29#

s5
A2

4B
. ~66!

In the context of the approach developed here, the sm
est eigenvaluel1 is given by Eq.~26!, where

q2m21522A~2m21!, q2m21
1 524B~2m21!,

q2m21
2 52m~2m21!, ~67!

and the continued fractionSn(0) is given by

Sn~0!5
~n21!

2A14BSn12~0!
. ~68!

However, now Eq.~26! is meaningful in the computationa
sense only fora.0, when the continued fractionsSn(0)
from Eq. ~68! converge. For a,0, which is the case of ou
interest, the continued fractionsSn(0) divergeand Eqs.~26!
and ~68! are purely formal solutions. This is a consequen
of the divergence of the recurrence equation~64!. Another
consequence is that the direct matrix method@Eq. ~25!# does
not apply to the solution of Eq.~64! as well. Nevertheless
we shall demonstrate below that the approach suggeste
Ref. @13# for the solution of divergent recurrence relatio
might still be used to render the solution forl1 .

In order to proceed we recall@13# that for a,0 the con-
tinued fractionSn(0) from Eq. ~68! can be expressed in
terms of Whittaker’s parabolic cylinder functionsDn(x)
@19#, viz.,
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Sn~0!5
~n21!

2A2B

D2~n11!/2~2A2s!

D2~n21!/2~2A2s!
. ~69!

Thus, on using Eq.~69!, the relations@19#

xD2n~x!2D2n11~x!52nD2n21~x!, ~70!

and @13#

2A14BS3~0!5
2A2Be2s/2

D21~2A2s!
,

Eq. ~26! yields

l1t05S es/2

D21~2A2s!
(
n50

`
~21!n

~2n11!

3G~n11!D2n21
2 ~2A2s!D 21

, ~71!

where the characteristic relaxation timet0 is given by

t05
2A2B

t«
5

z

A2bkT
. ~72!

On using the integral representation of the parabolic cylin
functions@19#

Dn~x!5
e2x2/4

G~2n!
E

0

`

e2u2/22xuu2n21du ~n,0!,

~73!

the series in Eq.~71! can be summed exactly to yield

l1t05S es

11erf~As!

3E
0

`E
0

`

e2~s2As!22~ t2As!2 erf~A2st!

Ast
ds dtD 21

.

~74!

Here we have taken into account the relation@19#

D21~z!5ez2/4Ap/2@12erf~z/& !#

and the following Taylor expansion of the error functio
erf(x) @19#:

erf~x!5
2

Ap
E

0

x

e2t2dt5
2

Ap
(
n50

`
~21!nx2n11

n! ~2n11!
.

On noting that erf(x);1 atx→`, one can obtain from Eq
~74! a simple asymptotic expression in the high barrier lim
(s→`), viz.,

l1t0;
2e2sAs

p
, ~75!

which is in agreement with the asymptotic solution obtain
by Larson and Kostin@28# ~in our notation!:
r

t

d

l1
ast0;

2e2sAs

p S 12
3

8s D ~s→`!. ~76!

Just as for the problems considered in Secs. III and
the lowest eigenvaluel1 for the potential~60! completely
determines the behavior of the correlation timet of the po-
sitional correlation functionC1(t), which may be presented
as @13#

t5
t023/4e3s/2

D23/2~2A2s!

3E
0

`E
0

`

e2~s2As!22~ t2As!2 erf~A2st!

As
ds dt. ~77!

As one can see in Table III and in Fig. 3, the lowe
eigenvaluel1 calculated from Eq.~74! agrees closely with
t21 from Eq. ~77! for all s. In Fig. 3 and Table IIIl1

as

calculated from the asymptotic Eq.~76! is also presented
The calculation demonstrates thatl1 , l1

as, and t21 are in
agreement in the high barrier limit. Moreover,l1 and t21

are very close to each other for all barrier heights.

VI. CONCLUSIONS

We have derived a simple approximate analytic form
Eq. ~15! for the smallest eigenvaluel1 of the Fokker-Planck
equation for the Brownian motion of a particle in a potent
in the context of the continued fraction approach. This eq
tion is applicable to the calculation ofl1 if the solution of
the FPE can be reduced to the solution of a scalar three-
recurrence equation for the moments~the expectation values
of the dynamic quantities of interest!, and it is also very
useful for analytical purposes. As was shown on consider
particular problems,l1 from Eq. ~15! may further be repre-
sented in terms of known mathematical functions. An adv
tage of the present analysis is that it can be applied to mo
where the relaxation behavior is governed by diverg
three-term recurrence relations. As was also demonstra
Eq. ~15! has a wide area of applicability, namely, it allow
one to evaluatel1 with good accuracy in high, intermediate
and small barriers. The reason for this is that both the ex
Eq. ~7! and the approximate Eq.~15! predict the correct be-
havior of l1 both in the high and in the low barrier limits

TABLE III. Numerical values for the 2-4 potential Eq.~60!.

s l1t0 @Eq. ~74!# l1
ast0 @Eq. ~76!# t0 /t @Eq. ~77!#

0 0.937 206 ` 0.980 499
1 0.256 730 0.146 375 0.274 517
2 0.111 443 0.098 999 0.118 609
3 0.048 852 0.048 036 0.051 471
4 0.020 951 0.021 134 0.021 850
5 0.087 591 0.008 872 0.009 059
6 0.003 583 0.003 624 0.003 682
7 0.001 441 0.001 454 0.001 474
8 0.000 571 0.000 576 0.000 582
9 0.000 225 0.000 226 0.000 228
10 0.000 088 0.000 088 0.000 089
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FIG. 3. l1 ~solid line! for the 2-4 potential
Eq. ~60! as a function of the barrier height param
eters compared with the asymptotic solutionl1

as

of Larson and Kostin@Eq. ~76!# ~dashed line! and
the solution rendered by the inverse of the cor
lation timet21 @Eq. ~77!# ~diamonds!.
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This has the merit that one now has an analytic formula
the smallest eigenvaluel1 for all ranges of barrier heights
Moreover, as we shall demonstrate in the forthcoming pa
@33#, a similar~matrix continued fraction! approach can also
be used for the calculation ofl1 for systems whose dynam
ics is governed by multiterm recurrence equations, provid
good estimates forl1 for all barrier heights and covering
wide range of the friction parameter of the FPE~from over-
damped up to low damping!.
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