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Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation
for Brownian motion in a potential: The continued fraction approach
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An equation for the smallest nonvanishing eigenvalyeof the Fokker-Planck equatio(FPE for the
Brownian motion of a particle in a potential is derived in terms of continued fractions. This equation is directly
applicable to the calculation af, if the solution of the FPE can be reduced to the solution of a scalar
three-term recurrence relation for the momefthe expectation values of the dynamic quantities of intgrest
describing the dynamical behavior of the system under consideration. In contrast to the previously available
continued fraction solution fok, [for example, H. RiskenThe Fokker-Planck Equatior2nd ed.(Springer,

Berlin, 1989], this equation does not require one to solve numerically a high order polynomial equation, as it
is shown that ; may be represented as a sum of products of infinite continued fractions. Besides its advantage
for the numerical calculation, the equation so obtained is also very useful for analytical purposes, e.g., for
certain problems it may be expressed in terms of known mathemétjpatial functions. Another advantage

of such an approach is that it can now be applied to systems whose relaxation dynamics is governed by
divergent three-term recurrence equations. To test the theory, the smallest eigenyvasuevaluated for
several double-well potentials, which appear in various applications of the theory of rotational and translational
Brownian motion. It is shown that for all ranges of the barrier height parameters the results predicted by the
analytical equation so obtained are in agreement with those obtained by independent numerical methods.
Moreover, the asymptotic results fag previously derived for these particular problems by solving the FPE in

the high barrier limit are readily recovered from the analytical equations.

PACS numbd(s): 05.40.Jc, 05.10.Gg

I. INTRODUCTION rence relation between the averages iscalar three-term
one, the solution may be expressed in terms of ordinary in-

The model of Brownian motion of a particle in a potential finite continued fraction§11,12. A multiterm recurrence re-
has a variety of applications. Among the various phenomentation may be reduced to matrix three-term recurrence re-
to which this model has been applied, one can mention thiation, which may be solved in terms of matrix continued
current-voltage characteristics of the Josephson jungign ~ fractions[11]. In the present paper we confined ourselves to
the dielectric and Kerr-effect relaxation of liquids and mo-Problems that may be reduced to the solution of a scalar
lecular and liquid crystal§2—5], the mobility of superionic three-term recurrence relation only. The_ probl_em |nv0IV|_ng
conductorg6], the magnetic relaxation of single-domain fer- the sc_)lut|on of mul'glterm recurrence relations will be consid-
romagnetic particlessuperparamagnetigm?7,8], the escape ered in a forthcoming paper. . .
of particles over potential barrief®], radio engineering dov,tns;:;\[lﬂ]three-term recurrence relation may be written
[10], etc. A detailed discussion of this model with many
particular applications is given ifi1,12.

The dynamics of the Brownian motion of a particle in a
potential is described by the Langevin equation for appropri-
ate dynamic variables or the accompanying Fokker-Planck
equation(FPE) for the probability density function of these n=12.3 (1)
variableg[11]. The solution of the Langevin equation or the e
FPE can be reduced to the solution of an infinite hierarchy of
equations for the momentdhe expectation values of the where theC,(t) are the moments or the appropriate relax-
dynamic quantities of interestlescribing the dynamics of ation functionsg, , q, , andq, are time independent coef-
the system under consideration. Various examples can biicients, andr, is a characteristic time constant. Such rela-
found in Refs.[11] and[12]. In general, the hierarchies of tions usually arise from solution of the FPE in the high
the moment equations that are generated by the underlyirfgiction (overdampeglimit, when it is possible to neglect the
FPE take the form of three{or higher-order term inertia of the Brownian particlgl1,12. A general method of
differential-recurrence relations between the moments. Thuspolution of Eq.(1) in terms of continued fractions was de-
the behavior of any selected average is coupled to that of aficribed by Risken[11] and later extended by Coffey,
the others, so forming an infinite system of moment equaKalmykov, and Waldron[12]. The last approach has the
tions. The time behavior of the first-order average, for ex-merit of being simpler than the previously available solution.
ample, involves that of the second-order average, which ifhus, according t¢12], the exact solution of Eq.l) with
turn involves the third-order average, and so on. If the recurCy(t) =0 for the Laplace transform d,(t) is given by

d _
Te acn(t): an Cn—l(t)+ann(t)+qgcn+1(t)a
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The initial conditionsC,,(0) in Eqg.(2) can also be expressed
in terms of the matrix continued fractid®y,(0) from Eq.(3)
(see Refs[11] and[12)).

Having determinedC,(s) from Eq. (2), one is able to
calculate the relaxatiofor correlation time 7 of the dynamic
guantity of interest, which is defined as

C.(0)

™ C.0) fo Cihdt=2 o)

The relaxation timer may equivalently be defined in the

(4)
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and it is known that standard mathematical programs fail to
determine the roots of such an equation. Moreover, there are
some examples where the continued fract®yf—\) di-
verges(e.g.,[13]), or Eq.(7) is not applicable at all, because
the calculation gives rise to unphysical solutigrid]. In
such cases, Eq7) cannot be used for the evaluation)flt

is therefore still worthwhile to seek a more advanced ap-
proach, which would be applicable to the solution of Ef).

This is especially important if one perceives that standard
computational methods such as the numerical solution of Eq.
(7) arranged as a first-order matrix differential equation, viz.,

d
G XO=AX() (8)

[A is a tridiagonal system matri¥(t) is an infinite column
vector arranged from the momens,(t)], may also be in-
applicable in such cases.

The goal of the present paper is to extend the continued
fraction approach of Ref11] for evaluation of the eigenval-
ues of the FPE for Brownian motion in a potential. Here, a
usable method for evaluating the smallest nonvanishing ei-
genvalue\, is presented. A knowledge of; is of impor-
tance because various time constants such as the relaxation
time 7, the mean first passage time, and the escape rate, are

context of the FPE converted to the Sturm-Liouville problemmainly determined by the slowest low frequency relaxation

as
_ Eka/)\k
T Sk

: (5

where\, andc, are the eigenvalues and their correspondin
weight coefficients(amplitude$, as the functionC,(t) is
given by

Ci()=2) ce .
k

Thus in order to evaluate from Eq. (5) knowledge of the
eigenvalues\, and their amplitudeg, is required. As has
been shown in many examplés.g., Refs[11], [13-15),

the results given by Eq$4) and(5) are completely equiva-

mode, which governs transitions over the barriers from one
potential well into another. The characteristic frequency of
this overbarrier relaxation mode is given by the inverse of
N1. Moreover, in many cases the influence of other relax-
tion modes in the low frequency region may be ignored and,
hus, knowledge of ; provides sufficient information about
the low frequency dynamics of the system under consider-
ation[11,172.

The paper is arranged as follows. In Sec. Il, an equation
for the smallest eigenvalue, is derived in terms of contin-
ued fractions. Verification of the validity of this equation is
given in Secs. Il and IV by evaluating, for symmetric
bistable potentials, which appear in various applications of
the theory of rotational Brownian motion. Furthermore, the
approach developed is used in Sec. V for the calculation of

lent. Other time constants that characterize the dynamics of; for the problem of translational Brownian motion in a

the system, such as the mean first passagejgpe[15]. the
effective relaxation timer¢ [16], etc. can also be evaluated
in terms of\, andcy.

In general, the eigenvalue problem of the FPE is quite

difficult to solve. Various methods of calculating the eigen-
values of the FPE have been discussed in detail in [R&f.

quartic double-well potential, where the relaxation dynamics
is governed by a divergent three-term recurrence equation.

II. CONTINUED FRACTION SOLUTION FOR A\,

In general, Eq(7) allows one to evaluate all the eigenval-

In the context of the continued fraction approach, the eigenues numerically{11]. However, if one is interested in the
values can be determined by inserting the separation ansatalculation of\; only, Eq.(7) can be simplified as follows.

[11]

C,()=C,e™, n=123..., (6)

into Eq. (1). Thus, one obtains an equation for the eigenval-

ues, viz.,
TN+ 01+ 0y S(—N)=0. (7)

The disadvantage of E§7) is that in some cases it may be

On supposing that the continued fracti® may be ex-
panded in Taylor series, viz.,

extremely difficult to evaluate the eigenvalues, as it involves

finding the roots of a very high order polynomial equation,

S~ A1)~ S(0)~ (0} + 850) 2L
+O((rh1)°), ©
which is subject to the condition
|701S5(0)/28)(0)| <1 (10
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that allows one to take into account only the first two termsalso be used for the evaluation &f for those problems
in Eqg. (9), one has from Eq(7) where the continued fractionS,(0) diverge and thus the

ot n _ continued fraction approach based on solving &q.is no
Teha[1=0; Sp(0) ]+ 0110 S,(0)=0 longer applicablésee, e.g., Ref13]). Such an example will

or be considered in Sec. V.
N
= 91+0; S(0) (11) l1l. TWO-DIMENSIONAL ROTATIONAL BROWNIAN
et 1-q; S,(0)’ MOTION IN A DOUBLEFOLD COSINE POTENTIAL

where Sy(0) andS,(0) are the first and second derivatives Here_ we shall consider the n_oninerFiaI rotational _Brown-
of the continued fractiors,(s) with respect tos7,, respec- lan motion of a planar rotator with a dipole momemin a
tively. The condition(10) of the applicability of Eq(11) is  doublefold cosine potential
evidently valid in the high barriefor low temperaturglimit, V(8)=U sin?6, (16)
wherer A1<<1[11,12. However, Eq(11) also provides suf-
ficient accuracy for intermediate and small barrier heightswhere ¢ is the angle between the dipole vecprand thez
wherer\;=<1, but the conditior(10) still remains fulfilled, —axis. A comprehensive numerical study of this model has
as S5(0)/2S,(0)<1 (see Secs. Il and IV been made by Lauritzen and ZwanZig/] and Coffeyet al.

In order to calculat ; from Eq.(11), one needs to derive [18]in connection with site models of dielectric relaxation in
an equation foiSy(0). This can be accomplished by noting Molecular crystals. Here this model is used as a simple ex-

that the continued fractioB,(s) defined by Eq(3) and the ample for verification of the continued fraction solution Eg.
derivative ofS,(s) with respect tesr, satisfy the following (15). Furthermore, although this model has already been well

recurrence relations: documented in Refd17] and[18], an equation foir; that
- would be valid for all ranges of the barrier height parameters
B An has not yet been presented.
Sn(s) = 75— Qn—0, Sni1(S) (12) In order to study the longitudinal relaxation behavior, it is
supposed that a small uniform fiele applied along thez
and axis is switched off at=0. Then the noninertial Langevin
, , _ equation for a dipolgu rotating about an axis normal to the
Sn(s) =- Sﬁ(s)[l_ qu:SnJr l(s)]/Qn ’ (13) XZ p|ane |S[12] qL
respectively[ Equation(13) can be readily obtained by direct d L
differentiation of Eq.(12).] The solution of the recurrence 959(t)+U sin“o(t)=A(t) (t>0), (17
Eqg. (13) may be obtained by iteration and is given by
1= k wheresf and\(t) are the frictional and white noise torques
Si(s)=— > ( IT 2..(s)a'. .. Jan ) due to the Brownian motion, anglis the viscous drag coef-
" -1 K50 | m=0 Strem nrme M ficient. The relevant noninertial FPE for the probability dis-

tribution functionW of th led is [17
which yields fors=0 andn=2 ribution functionW of the angled is [17]

=K Tw- L w&v)+ azw (18)
1 W=z — | W— — W,
S (0)=- = ( sfﬂ+1<o>q;/qn:+1>. (14 Pt kT a8\ " 06 "] " 00
J; k=1 \m=1
where
Thus, on substituting Eq(14) into Eqg. (11), we have an /KT 19
equation for\{, viz., =S (19
q,+ qISZ(O) is the Debye relaxation time for a planar rotator &ds the
TN = — = R (15  thermal energy withk the Boltzmann constant andl the
1+ 2 (0)a~ / - absolute temperature.
kzl n]f_:'[l m1(0)m /G2 The differential-recurrence equation for the odd statistical

momentsf,,_,(t) appropriate to dielectric relaxation de-
We shall now show that the calculation ®f, unlike the  fined as

representation of Eq7), which always requires one to solve
numerically a high order polynomial equation)ncan now fan-1(t)=(cog2n—1)6) (20)
easily be accomplished from E@.5). Equation(15) requires - -

only calculation of the continued fractioi®(0), which can ghtilzl]q gular brackets mean a statistical averagmgjiven
be carried out even on a programmable pocket calculator”

[11]. Moreover, Eq.(15) can be further simplified by using d (2p+1)2

the method developed by Coffey, Kalmykov, and Waldron gt f2e-1(DF T—szp+1(t)

[12]. According to this method, the continued fractigg(0)

for certain problems may be expressed in terms of equilib- ag(2p+1)

rium averages as a ratio of known mathematitgipergeo- - T“Z;)fl(t)_ fapra(t)]. (2D

metric functions. This allows us to derive analytical equa-
tions for\ ;. The advantage of such an approach is that it carHere
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U where we have used 9]

g= ﬁ (22)

12 (z)= isinh2 z '3 2) =cothz— = (32)
is the barrier height parameter. 1z T ' z z

The set of Eq(21) may be transformed into the matrix

equation(8), where the system matriX is given by Equation(30) can be further simplified, on noting thg&0]
(1—al2) ol2 0 0 0 oc |2 2
_ p_P“/Z(Z) _ct 333.52
W 1| 302 9 32 0 0 - pZO( VP et g 2Fa(LL3.52),
™ 0 —50/2 25 55/2 0

where,F;(a;,a,;b1,b,,b3;2) is a hypergeometric function
(23) [20]. Thus, Eq.(30) yields

o 0_2 -1
and }\1'7'D= —0.2F3< 1,1,%,%,%,_)} . (32)
fl(t) 1-e 4
fa(t) For o<1, one can obtain from Eq32) the Taylor series
X(t)= : ] (24)  expansion ohy, viz.,
1:2p+:l.(t) o 5
: MTp=1— =+ = d*+0(d3). (33

2 54

The lowest eigenvalua ; is then the smallest root of the
characteristic equation

de(\—A)=0. (25)

In the opposite limit &> 1), on using the asymptotic expan-
sion of I ,(2) for large values ot in Eq. (30), one arrives at

4oge 7

For the problem in question, evaluation of the eigenvalues Ao~ (34)

from Eq. (25) creates no difficulties and it is used here only

for the purpose of comparison with the results of the contingqyation(34) is in agreement with the results of Lauritzen

ued fraction approach. _ _ and Zwanzid17], who obtained an asymptotic expansion for
In the context of the continued fraction approach, theye owest eigenvalue in the limit of high potential barrier.

smallest eigenvalue is given by E(LS). For the present This is also in accordance with the leading term of the

problem, where only the odd moments are involved in Edasymptotic expansion fox, obtained in Ref[21], viz.,
(21). Eq. (15 becomes

doe™ 7 1
ds+d; S3(0) as, =
Tph1=— = 3 : : 17D T ! 20 (35)
1+ 2 . (0)gs _ / > )
kgl m=1 Som+(0)am-1 /- o Equation(34) is also in accordance with results of the evalu-
(26) ation of the mean first passage time of the model under con-
where sideration in the high barrier lim{tL5].
For the present problem the lowest eigenvalue completely
— (om+1)2 + __C omt1 determines the behavior of the correlation timé&om the
Qom+1= = (2MH+ D)% dopsq= 2( m+1), exact Eq.(4), which yields[18]
_ o p(e’—1)
==(2m+1), 2 =—
Uomi1=75 (2m+1) (27 o)
and the continued fractio8,. 1(0) is given by[18] y i (1) 1ps1(af2)+1(012) I (o2
Sy 11(0)= o . o (2p+1) [(a/2)+1g(al2) P27
k+l 4Kk+2+ Sy, 3(0) (36

The Sy, 1(0) from Eq.(28) may in turn be expressed in ) ) , )
terms of modified Bessel functions of the first kind of half ][Equat|on(36) may be equivalently presented in an integral

integer orden ., 1/5(z) [19] as[18] orm as
~ t12(0l2) B ™
Sl 0= 7 o) 29 T 1 (012) +1o(012)]

2

i 2
Equation(26) then becomes after some algebra y j o (/21005 24)( J¢ cosxe o2y | dg.
0 0

- p|;2)+1/2(0/2) o

N Tp= LE (-1

1-e "~ 2p+1 (0

(37
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TABLE I. Numerical values for the doublefold cosine potential.

al2 oA "M [13] 7o\ 1 [EQ. (30)] oA [Eq. (39)] /7 [Eq. (37)]
0 1.0 1.0 - 1.0
1 0.3237 0.32336 0.258 47 0.32571
2 0.0820 0.08193 0.08162 0.08264
3 0.0172 0.017 15 0.017 36 0.01725
4 0.00318 0.00318 0.00320 0.00319
5 5.463< 104 5.463x 10 * 5.491x 10 * 5.473x10 4
6 8.966<10°° 8.966x 10 ° 8.997x 10 ° 8.965x< 10 ®
7 1.426<10°° 1.426<10°° 1.429<10°° 1.427<10°°
8 2.22<10°°© 2.217x10°® 2.221x10°° 2.218<10°©
9 3.389< 1077 3.389x 1077 3.394x 1077 3.390< 1077
10 511108 5.112<10°8 5.117x10°8 5.114x10°8

Here we recalledsee, e.g., Refl11], Sec. S.9 that for a

W, (x)=Ce Y™ is the equilibrium(stationary distribution

stochastic system the dynamics of which obeys the oneéfunction (it is assumed that the probability curre®&0 at

variable FPE for the distribution functio of a variablex,

%W(X,t):LFpW(X,t), (38)

where

J J
LX) = — D<2>(x)e*U<X>5eU<X> (39)

is the Fokker-Planck operatdd,®)(x) is the diffusion coef-
ficient, andU(x) is a generalized potentifl1], the correla-
tion time 7 of the equilibrium (stationary autocorrelation
function Ca(t)=(AX(0))A(X(1)))o—(A)z of a dynamic

equilibrium), the symbol( ), designates the statistical aver-
ages ovelVy(x), andx is assumed to be defined in the range
X;<X<X,. For the problem under consideratian=0, X,
=27, andD@(x)=75".

The lowest eigenvaluk; calculated from Eq(30) agrees
closely for all o with the numerical solution]"™ gained as
the smallest root of the characteristic Eg5) (see Table |
and Fig. 3. In Fig. 1 and in Table A5° calculated from the
asymptotic Eq(35) is also presented. As one can see, all the
quantitiesk,, A§%, \[U™, and7 ! are in excellent agreement
in the high barrier limit. Moreover),, A]"", and 7! are
very close to each othéor all barrier heights This is due to
the fact that the conditioril0), which for the problem in
question reads

variableA(x) is [11] oA 1S4(0)
—— <1, (42
1 Fc Ot 1 fo f2(x)dx 25;(0)
T= — = .
Ca(0) Jo 74 Ca(0) Jx, DP(X)Wo(x) st holds even for =0, where \;7p=1, and
(40)  S}(0)/2S4(0)=—5.
Here IV. THREE-DIMENSIONAL ROTATIONAL BROWNIAN
MOTION IN A UNIAXIAL POTENTIAL
X
f(x)=—f [A(X")—(A)o]Wo(x")dX’, (41 Let us now consider the problem of three-dimensional
X1 noninertial rotational Brownian motion of a rigid symmetric-
1.0
0'8 \\ ,,,,,,,
K
S 4 \\ FIG. 1. \; (solid line) for a single-axis rotator
% 04 as a function of the barrier heiglt compared
g N with the asymptotic solution\3® [Eq. (35)]
< /‘\\f\.\ (dashed ling and the solution rendered by the
5 02 i \ """""" inverse of the correlation time* [Eq. (37)]
Q“ {1/ "\,‘,_ (diamonds.
0.0 N —St—ts, * *
II
1
024+t — T T . T
‘ 0 1 2 3 4 5

c/2
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top polar particle in the uniaxial potential symmetric-top molecule$3] and dielectric relaxation of
nematic liquid crystal$22]. Moreover, the theory of dielec-
V(9)=K sir? 6, (43) tric relaxation of nematic liquid crystals with uniaxial physi-

cal properties developed by Martin, Meier, and Sa[g#
whereK is an anisotropy constant. This is a complete threebears a close resemblance to the theory of magnetic relax-
dimensional analog of the two-dimensional problem considation of single-domain ferromagnetic particles as formulated
ered in Sec. lll. The particle contains a rigid electric dipale by Brown[7].
directed along the long axis. Let us take a unit vect(t) For the problem under consideration, the differential-
through the center of mass of the particle in the direction ofecurrence equations for the momengét) = (P,(cosé(t)))
m. Then one can write down an equation of motion for the[the expectation values of the Legendre polynomi|6z) |

rate of change ofi(t) of the particle[12] are given by{12]
d (2n+1)(n+1)
du(t)——ivw(t) u(t)-iv +A(t)Xu(t) dp 21t T
STdt o Ju ’ b
(44) 20 ar
“|@nrDanss 1fanalV

wheres is the friction coefficient and(t) is the white noise
driving torque due to Brownian movement. Equatid#d) is 4o(n+1)(2n+1)
the vectorial Langevin equation. The corresponding noniner-

tial FPE for the probability density distributiow of orien- To(4n+3)

tations of molecular dipoles in configuration space is given (2n+3)
by [12] X mon—l(t)_mf2n+3(t)),
J 1
275 W= AW+ [ =div(WgradV), (45) (47)
where
where K
To=s/2kT (46) o=1T (48

is the Debye relaxation time for the isotropic diffusion and is the barrier height parameter.

is the Laplacian on the surface of unit sphere. The rotational The set of Eqs(47) may be solved numerically by trans-
Brownian motion of a particle in the uniaxial potenti@3)  forming it into the matrix Eq(8), the lowest eigenvalug,
arises in a variety of problems. Examples can be found irof which is then the smallest root of the characteristic Eq.
dielectric and Kerr-effect relaxation of polar and polarizable(25), where

(1-%0) to 0 0 O
1 %y 6— 0 Dy 0 o -
A:__ 35 ( 15 ) 1 ) (49)
)0 -80 (15-3%0) #e 0 -
|
In the context of the continued fraction approach the - 4om(m—1)(2m—1)
smallest eigenvalug, is given by Eq.(26), where G2m-1="Am=3)(am=1) (51
2
20 N 2om(4m-—1)
— —mm-1)| 1— e (52)
Oom—1=—M(2m—-1)| 1 am=3)(am+1)," Uom-1 16m2—1

(50 and the continued fractio§,(0) is defined as

B 20(n—1)
S(0)= 4n’—1-[20/(2n+3)][2n+1—(n+2)(2n—1)S,,,(0)]’
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TABLE Il. Numerical values for the uniaxial potential E@3).

o 7oA"" [Eq. (25)] 7M1 [EQ. (54)] oA [Eq. (57)] /7 [Eq. (59)]
0 1.0 1.0 —0 1.0
1 0.653 14 0.652 47 0.0 0.654 46
2 0.403 84 0.402 86 0.21596 0.406 45
3 0.23570 0.23503 0.19461 0.238 20
4 0.12984 0.12953 0.124 00 0.13147
5 0.067 70 0.067 60 0.068 00 0.068 55
6 0.03361 0.03358 0.034 26 0.03398
7 0.016 00 0.016 00 0.016 33 0.016 15
8 0.007 36 0.007 36 0.007 50 0.007 41
9 0.003 29 0.003 29 0.00334 0.00331
10 0.00144 0.00144 0.001 46 0.00145
which may in turn be express¢@3] in terms of the conflu- 200 4
ent hypergeometridkummey functions M(a,b,z) ([19], MTp=1— &+ 5z0?+0(0?).

Sec. 13, viz.,

On the other hand, on using the asymptotic expansion of

5

75
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(59

5
Sy 1(0)= aka M(k+l’2k+2’a). (53  Kummer's functiond19], viz.,
(4k+1)(4k+3)  M(k,2k+1,0)
['(b)e?z3 P
: M(a,b,z)=
Thus we obtain from Eqg26) and (50)—(53) I'a)I'(b—a)I'(1—a)
S-1
0 2\n I'(b—a+n)I'(1—a+n) B
Nro=| —U—) x| 2, T+ 1)z TO@@ ),
8M(15,0)n=0 | 4 n=0
r2n+1)M3n+1,2n+35,0)| " one obtains fowr>1
X - —| . (59
(n+1)I'(2n+3)T(2n+3) - 2320 56
o~
1'D \/;

which is the solution in terms of known functions. Here we
have also used the fact that3] . . . .
Equation(56) is in full agreement with the leading term of

1-20[1—S4(0)]/5=1M(L%,0). the previous asymptotic solutid21],

For o<1, one can evaluate from E¢p4) the Taylor se-
ries expansion ok, viz.,

(57)

20_3/2e— o 1
)\?S’TD ~ ( )

(s

o

1.0
0.8 \\
H 06
RS FIG. 2. N1 [Eq. (54), solid line, and Eq(25),

- starg for the cod ¢ potential as a function of the
o e U e S barrier heighte compared with the asymptotic
< solutionA$°[Eq. (57)] (dashed ling and the so-

- 02 demee lution rendered by the inverse of the correlation

& e time 7! [Eq. (59)] (diamond$.
~ /
0.0 ,,’I
02 L : : . i
0 2 4 8 8 10
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The lowest eigenvalua ; from Eq. (54) is in very good In Eq.(57), X(t) specifies the position of the particle at time
agreement with the numerical solution§"™ of the charac- t, {X is the viscous drag experienced by it, af(d) is the
teristic equationEq. (25)] for all o (see Table Il and Fig. 2. white noise driving force. The underlying noninertial FPE
In Fig. 2 and in Table IN5° calculated from the asymptotic for the probability distribution functiokV of the positionx is
Eq. (57) is also presented. Just as for planar rotators, the 2

behavior of\, is similar to that of the relaxation time of gﬁW: i(wiv +kTa—2W (62
the dipole correlation function, which may be presented as a at Ix\ Ix IxX
series[23],
[cf. Eq.(18)].
T, 2“’: (=)' (Nn+HT(n+HI'(n+3) Equation(61) or (62) may be recadt13,29 as a hierarchy
— =2 of equations for the normalized correlation functiddg(t
XM(n+22n+3,0)M(n+1,2n+32,0) (59 e (x(0)X"(1))o -
or in a quadratur§Eq. (40)] [14,24, viz., " (x3(0))g V=
2
T 3 J'l cosho(1-29]-1 dz (59 where( ), designates equilibrium ensemble averages. Thus,
™ oM(,E,0) Jo 1-7° ' the C,,(t) satisfy

A1, A%, and 7! are in excellent agreement in the high EC H=n(n—1)C._(t)— -

barrier limit and, moreover\,, \]"", and 7! are very “dt o) =N )Cn-2t) = 2nAGL)— 4nBCh. (L),
close to each other for all barrier heights. Thus, (54) may (64)
be used to calculate; for all values ofa. The reason for this
is that the condition of applicabilityEq. (42)] of Eq. (54)

may be considered as fulfilled with sufficient accuracy even a(x?), b(x?)2 2{x),

where

for =0, where\;7p=1, andS;(0)/2S;(0)= —3. )T BT akT T kT (65)
V. BROWNIAN PARTICLE IN A 2-4 DOUBLE WELL We recall that whera<0 the potential60) has a barrier at
POTENTIAL x=0 where the potential has a maximum and the height
As another example let us consider the model of noniner/€1ative to the minimum is equal {@9]
tial translational Brownian motion of a particle in a quartic A2
potential: =I5 (66)
ax?  bx*
V(x)= >t (60) In the context of the approach developed here, the small-
est eigenvalue  is given by Eq.(26), where
wherea andb (b>0) are constants; «o<<x<c. This model L B o B
is very often used to describe noise-driven motion in a vari- Gom-1= ~2A(2M=1), Qo = —4B(2m—1),
ety of bistable physical and chemical systef@5—27. The - B
relaxational dynamics of the model in the high friction limit, Gom-1=2M(2m=1), (67
where the inertia of the particle may be neglected, has been . . L
extensively studied by solving the noninertial Fokker-PIanckand the continued fractio,(0) is given by
(SmoluchowsKi equation _underlying the problefsee, e.g., (n—1)
[28—37 and references cited thergimhe model of Brown- (68)

S0 =5xame o
ian particle in the potentigb0) poses the problem of solving 2A+4BS,.,(0)

divergentdifferential-recurrence relations for statistical mo-
ments[13,32. Here Risken’s continued fraction methdid]
and, in particular, Eq(7), is no longer applicable as all the

continued fractions involved diverge. However, as we shal . ; X
demonstrate below, our approach succeeds in this case. ferest, the continued fractio®(0) divergeand Eqs(26)

shall also show how the asymptotic solution of Larson anoand (68) are purely formal solutions. This is a consequence

: ; - f the divergence of the recurrence equati{éd). Another
Kostin [28] may be recovered from the continued fraction © . . .
solution[Eg. (15)] in the high barrier limit. In addition, these consequence is that the direct matrix methid. (29)] does

will be compared with the solutions of Peried al. [29] and not apply to the solution of Eq64) as well. Nevertheless,

Kalmykov, Coffey, and Waldrofi13] for the relaxation time we shall demonstrate_below t_hat the approach sugges_ted in
of the pos'itional c,orrelation function Ref. [13] for the solution of divergent recurrence relations
The noninertial Langevin equation for the one- might still be used to render the solution foy.

dimensional noninertial translational Brownian motion of a . Ingr;jer t.o proceedf we recglL3] that fot: a<0 the codn—.
particle in the potential Eq60) is given by[13] tinued fraction S“(O), rom Eq. (68) can be expressed in
terms of Whittaker's parabolic cylinder functior®,(x)

IX(t) +ax(t) +bx3(t) =f(t). (61  [19], viz.,

However, now Eq(26) is meaningful in the computational
sense only fora>0, when the continued fractionS,(0)
{rom Eqg. (68) converge For a<0, which is the case of our



6328

(n—1) Df(n+l)/2(_ \/%)

0)= . 69
S(0) 22B D—(n—l)lz(_\/%) (69
Thus, on using Eq(69), the relationg 19]
va(x)_DvaLl(X):_VDfol(X)1 (70)
and[13]
Z@e—am
2A+4BS;(0)= —————,
O (2
Eq. (26) yields
e0/2 * (_1)n
MTT\ 5T T e 2 2nt 1)
-1
I'(n+1)D2, ;(—\20)| , (71)

where the characteristic relaxation timgis given by

YU. P. KALMYKOV

PRE 61

TABLE lll. Numerical values for the 2-4 potential E¢60).

o Mi7o [EQ. (78] AP0 [Eq. (76)] 7o/ 7 [EQ. (77)]
0 0.937 206 o0 0.980 499
1 0.256 730 0.146 375 0.274517
2 0.111 443 0.098 999 0.118 609
3 0.048 852 0.048 036 0.051471
4 0.020951 0.021 134 0.021 850
5 0.087 591 0.008 872 0.009 059
6 0.003583 0.003624 0.003 682
7 0.001 441 0.001 454 0.001 474
8 0.000571 0.000576 0.000 582
9 0.000 225 0.000 226 0.000 228
10 0.000 088 0.000 088 0.000 089
2e" %o 3
iszf(l—%) (0—®).  (76)

Just as for the problems considered in Secs. Ill and IV,
the lowest eigenvalua, for the potential(60) completely

2.2B ¢ determines the behavior of the correlation timef the po-
To= = . (72 sitional correlation functiorC4(t), which may be presented
Ts V2bkT as[13]
On using the integral representation of the parabolic cylinder 102343712
functions[19 =
L19] D~ \27)
e X 214 s 5
—u2—xu —v—1 erf 2st
D,(x)= T~ e u du (v<0), J j o (52— (12 EMVESY (V )d dt (77
73 Vs

the series in Eq(71) can be summed exactly to yield

eo'
NTo=| ————
YO 1+ erf( Vo)
x f ' f “e (e SN2 g
0 Jo Jst

(74)
Here we have taken into account the relatjag]

D_,(2)=e"ml2[1—erf(zIV2)]

As one can see in Table lll and in Fig. 3, the lowest
eigenvalue\ ; calculated from Eq(74) agrees closely with
71 from Eq. (77) for all o. In Fig. 3 and Table IlI\§®
calculated from the asymptotic E¢76) is also presented.
The calculation demonstrates thaf, A\25, and 7~ ! are in
agreement in the high barrier limit. Moreover; and 71
are very close to each other for all barrier heights.

VI. CONCLUSIONS

We have derived a simple approximate analytic formula
Eq. (15) for the smallest eigenvalue, of the Fokker-Planck
equation for the Brownian motion of a particle in a potential
in the context of the continued fraction approach. This equa-

and the following Taylor expansion of the error function tion is applicable to the calculation of; if the solution of

erf(x) [19]:

(_1)nx2n+1
n'(2n+1) °

e dt= \/_20

erf(x)=

=l

On noting that erf{)~1 atx— <o, one can obtain from Eq.

the FPE can be reduced to the solution of a scalar three-term
recurrence equation for the momefitise expectation values

of the dynamic quantities of intergstand it is also very
useful for analytical purposes. As was shown on considering
particular problems); from Eq. (15 may further be repre-
sented in terms of known mathematical functions. An advan-

(74) a simple asymptotic expression in the high barrier limittage of the present analysis is that it can be applied to models

(o0— ), viz.,

A 1707 (75)

2e 7o
7T 1

where the relaxation behavior is governed by divergent
three-term recurrence relations. As was also demonstrated,
Eqg. (15 has a wide area of applicability, namely, it allows
one to evaluate.; with good accuracy in high, intermediate,
and small barriers. The reason for this is that both the exact

which is in agreement with the asymptotic solution obtainedEq. (7) and the approximate E@l5) predict the correct be-

by Larson and Kostii28] (in our notation:

havior of A1 both in the high and in the low barrier limits.
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FIG. 3. \; (solid ling) for the 2-4 potential
Eq. (60) as a function of the barrier height param-
etero compared with the asymptotic solutiari®
of Larson and KostifiEq. (76)] (dashed lingand
the solution rendered by the inverse of the corre-
lation time 7~ [Eq. (77)] (diamonds.

0.0 .

-0.2 L

This has the merit that one now has an analytic formula for

the smallest eigenvalug, for all ranges of barrier heights.
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